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Abstract

This report details the modeling results for the response of a finite-length dissipative 
conductor interacting with a conducting ground to the Bell Labs electromagnetic 
pulse excitation. We use both a frequency-domain and a time-domain method based 
on transmission line theory through a code we call ATLOG – Analytic Transmission 
Line Over Ground. Results are compared to the circuit simulator Xyce for selected 
cases.
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1. INTRODUCTION

The purpose of this report is to provide results for the current induced on finite-length dissipative 
conductors interacting with a conducting ground, when excited by the Bell Labs electromagnetic 
pulse (EMP). We will make use of both a frequency-domain and a time-domain method based on 
transmission line theory through a code we call ATLOG – Analytic Transmission Line Over 
Ground. Results will be compared to the circuit simulator Xyce. We describe the problem at 
hand in Section 2, report the frequency-domain formulation in Section 3, the time-domain 
formulation in Section 4, and then proceed with the description of a finite-wire under the Bell 
Labs EMP in the remainder of this report. This drive waveform is being used here as an example; 
the theoretical model and ATLOG code are general and can be used to characterize transmission-
line output for any pulse waveform. 
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2.  DESCRIPTION OF THE EMP PROBLEM

We aim to model the EMP problem depicted in Figure 1: a finite-length conducting wire located 
at a distance h from the ground is excited by an EMP plane wave incidence. Our goal is to 
compute the current excited in the wire from such EMP coupling.
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Figure 1. Schematic of the problem: a finite (coated) conducting wire with 
length L is located at a distance h from a conducting ground 
plane. The wire is illuminated by a Bell Labs plane wave 
excitation as depicted in the figure. The inset shows the wire 
cross section.

2.1. Bell Labs EMP excitation

We use the Bell Labs electromagnetic pulse waveform as excitation of the transmission line. A 
double exponential characterization of the waveform is [1]

       (1)    tueeEtE tt    0

with , , . The peak amplitude is , with a kV/m 5.520 E -16 s 104 -18 s 1076.4  kV/m 50
10% to 90% rise time of 4.15 ns, and a fall time from peak to 50% of peak of 175 ns. The 
spectrum is 
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The choice of parameters which fit the peak amplitude and the rise and fall times of the Bell 
Labs waveform are [2] , , , kV/m 500 E -18 s 103.10  -18 s 1034.10 

, and . The corresponding spectrum is910160227115.1 d ns 20pt
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2.2. Frequency-domain ATLOG model

The coupling to the transmission line mode from an incident plane wave is considered. This is 
the same calculation as carried out previously in [3-5] and references therein and is summarized 
here briefly for convenience. The transmission line equations are

       (5),,inc YV
dz
dIEZI

dz
dV

z 

with the impedance given as the sum of three terms as   and the admittance 420 ZZZZ 

given as the sum of two terms as  with ,  for ,  
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Ge /2ln

2 air
 bh  air

is the air conductivity, and all the other parameters are defined in [3-5]. 
The solution of Eq. (5) for finite lines is given by                                                                                                                                                                
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parameters are reported in [3].

2.3. Time-domain ATLOG model

The coupling to the transmission line mode from an incident plane wave is considered. This is 
the same calculation as carried out previously in [6] and is summarized here briefly for 
convenience. 
The ladder network equations governing the current  and the voltage  are given byI V
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which can be numerically integrated. In Eq. (7), we assume we know the distribution of the drive 
field  (without the wire) along the line. The parameters , , , and  represent the per-inc
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unit-length resistance, inductance, conductance, and capacitance. For simplicity in this section 
we assume that the wire has radius a = b, i.e. no dielectric coating. The resistance  accounts for R
losses in the wire as 

       (8)2
0

1
a

R




where  is the wire conductivity and  the wire radius. The conductance  appears only if the 0 a G
air became ionized during the burst, leading to conductivity in the air  for whichair
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where  is the height at which the wire is located, and  represents the radius of an insulation h b
layer, if present; otherwise, . The capacitance  is given byab  C
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where  is the relative permittivity of the air and  is the absolute permittivity of vacuum. air 0
The inductance  is given byL
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where  is the absolute permeability of vacuum. The ground impedance  is given by [7]0 g
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and  the modified Bessel function of the first kind of order 0. 0I
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To numerically integrate Eq. (7), we break up the length into discrete distances , Nnlnzn /
(with ,   the wire length, and  the number of segments) and half distances Nn ,,1,0 K l N

(with ). Since we are initially interested in open     Nlnnzn /2/12/12/1  Nn ,,2,1 K
circuit end conditions, we place the currents at the nodal locations and the voltages at the half 
nodal locations

     (14)
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Thus, following Eq. (7) we can write the transmission line equations as

            (16)
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Putting these into standard form for the ODE solver, we get

          (17)
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3.  SIMULATION RESULTS FOR FINITE WIRES

In this section we report results from the Bell Labs EMP excitation in Section 2.1. The 
parameters we first take in this section on the simulations are as follows: lossy ground with 

 and  or PEC ground,  (i.e. no coating), , and 04 10  S/m 0015.04  02   cm 27.1 ba

 using . We consider a 100 m long wire above S/m 109281.21 7
20 

aR
 /m 1074.6 5  R

ground with . The finite line is left open-circuited at both ends. m 10h

The induced current in the middle of the 100 m line computed using the two implementations of 
ATLOG in Section 2.2 and Section 2.3 and Xyce [8, 9] is reported in Figure 2 to Figure 5 for 
various ground and air conductivity conditions as described in the figure caption. Great 
agreement is observed among the different methods. Note that Xyce currently allows modeling 

PEC ground only. Note that  is taken as a constant in the time domain solution 2
0

1
a

R




whereas the resistance per unit length  (and the internal inductance) of the wire vary in the R
frequency domain solution.

Figure 2. Current versus time for the Bell Labs excitation for a 100 m long 
line with PEC ground, no air conductivity. Results are based on 
the time-domain ATLOG model, the frequency-domain ATLOG 
model, and the Xyce circuit simulator. The current is evaluated at 
the center of the wire.
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Figure 3. Current versus time for the Bell Labs excitation for a 100 m long 
line with PEC ground, 10-4 S/m constant air conductivity. Results 
are based on the time-domain ATLOG model, the frequency-
domain ATLOG model, and the Xyce circuit simulator. The 
current is evaluated at the center of the wire.

Figure 4. Current versus time for the Bell Labs excitation for a 100 m long 
line with lossy ground, no air conductivity. Results are based on 
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the time-domain ATLOG model and the frequency-domain 
ATLOG model. The current is evaluated at the center of the wire.

Figure 5. Current versus time for the Bell Labs excitation for a 100 m long 
line with lossy ground, 10-4 S/m constant air conductivity. 
Results are based on the time-domain ATLOG model and the 
frequency-domain ATLOG model. The current is evaluated at the 
center of the wire.
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4.  CONCLUSIONS

In this report we computed results for the current induced on finite-length conductors interacting 
with a conducting ground when excited by the Bell Labs electromagnetic pulse (EMP).  We used 
both the frequency-domain and the time-domain ATLOG models, and compared these results to 
ones computed using the circuit simulator Xyce. Great agreement has been observed between the 
three models. The ATLOG model allows for the treatment of finite or infinite lossy, coated wires 
and lossy grounds. This capability in conjunction with the ability to treat a variety of different 
transmission-line scenarios (cable above ground, resting on the ground, and buried beneath the 
ground) makes our model general and a more complete tool for TL consequence assessment. The 
ATLOG method is offered as an alternative option to a full-wave solution, as opposed to a 
wholesale replacement method. It is our experience that this type of faster-running tool is 
extremely useful to quickly assess a wide variety of scenarios and determine relative impact over 
a wide parameter space. In addition, this type of tool may be of value because it does not 
necessarily require an expert user and, combined with other toolsets, can be used in an operator-
mode for damage assessment. 
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